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AlignKD: A Low-cost Technique for Convolutional Shortcut Removal

Shiu-hong KAO (20657378), Bo-Rong LAI (20737984)

Abstract

Deep neural networks have become increasingly robust due to the invention of the residual network. While adding shortcuts
to networks has been widely used, the downside has also drawn more attention. Even though implementing residual networks
significantly increases the accuracy, additional computational cost introduced by these shortcuts is frequently overlooked.
Many studies have been working on the field of how to cut down the cost while maintaining the accuracy during training.
In this paper, we have looked into several papers related to shortcut removal, and we especially investigated the approach
using knowledge distillation. The approach adapts the teacher-student paradigm which reduces the inference time. After
evaluating the performance of this strategy, we assert that operational redundancy exists inside the current teacher-student
paradigm. In particular, multiple copies of feature maps are computed repeatedly in the teacher model. We further adjust it
and develop our way to reintroduce the transferal approach from teacher to student. We proposed a novel approach AlignKD
by making the distillation procedure aligned between the teacher and student model stage by stage. AlignKD is expected to
save more computational cost for producing the repeated feature maps, thus are anticipated to see a shorter training time for
the network to converge. During the experiment, we have undergone the datasets CIFAR10, CIFARI00, and Imagewoof for
image classification. Finally, our proposed method achieves comparable or even higher results than the previous work with
a lower time cost. However, several potential improvements are also included in the discussion.
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Figure 1. Methods to remove convolutional shortcuts

1. Introduction

In recent years, deep neural networks have improved dra-
matically with high accuracy in many applications. While
increasing accuracy, the improvement of performance is of-
ten accompanied by the depth and capacity of the convolu-
tional module. Among all the issues, the gradient vanish-
ing problem has become widely discussed. The problem
is invoked while entering relatively deeper layers during
a training process. Thus, multiple state-of-the-art models

have aimed to address this issue. Among all these studies,
the introduction of shortcut architecture in ResNet [4] has
gained remarkable popularity. Later on, plenty of papers
such as MobileNet [5], ResNeXt [13], EfficientNet [11],
etc., have also included shortcuts mechanism in their work.
Usually, there are two common interpretations of shortcut
utilization: preservation of previous features in the forward
pass and transferring the gradient information during the
backward pass.
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However, the downside of implementing shortcuts has
often been overlooked. According to Arash et al. [1],
the shortcut mechanisms can account for nearly 40 per-
cent of total feature maps. These massive data heavily
occupied off-chip memory traffic consumption. To tackle
the issue, there are two existing studies we have investi-
gated. The first one is RepVGG [3], which suggested to
remove shortcuts by combining the matrix operations via
re-parametrization. After a series of mathematically equiv-
alent transformation, multiple matrices are merged into one
during test time for saving more computational power. The
following one is JointRD [9]. In [9], they proposed a novel
joint-training network which it aimed to train a naive CNN
model by transferring the learned knowledge from a pre-
trained ResNet counterpart model. This addressed the in-
voking of gradient vanishing problem by enabling the plain-
CNN model with shortcuts feature from ResNet. The exper-
iments had reported that the accuracy of plain-CNN model
trained by JointRD can obtain comparable accuracy with
pure ResNet model, and meanwhile were able to abridge
the inference time.

While JointRD has gained great success in removing the
shortcuts from the model, the computational cost for the
removal process remains high. In this paper, we suggest
a more streamlined architecture based on the proposal in
[9]. Based on the original architecture for distillation, we
utilized a different approach to divide the architecture into
multiple stages. The main goal of our design is to avoid
redundant computation during the distillation process. To
transfer the knowledge directly from the intermediate fea-
tures, we aligned the plain-CNN model with its counter-
part model and compute feature-based loss after each stage.
By doing this, we implicitly make the plain-CNN model
to mimic the behavior of its counterpart as much as pos-
sible. Eventually the loss of rest layers are calculated by
logit-based function. Together, we form an architecture en-
ables a naive model the ability to acquire knowledge from
a complex model without shortcuts implementation. Com-
pare to the original work, our framework eliminate repeated
forward passes in the teacher’s model, thus are expected to
increase the time efficiency. In addition, by conserving the
original joint training paradigm, we prove it is still realiz-
able to remove all the shortcuts while solving the gradient
vanishing problem and preserving the previous features.

2. Related Work

According to [12], they suggested multi-branch topol-
ogy, such as ResNet, can be considered as an implicit en-
semble of numerous models. In [3], based on the pro-
posal of [12] point out that the benefits of ensemble mod-
els are not desirable for inference. They further proposed
the decoupling of the training time and inference-time ar-
chitecture by utilizing structural re-parameterization, which

means converting the original architecture into another form
by transforming its parameters. The final model has a VGG-
alike plain topology which only consists of a feed-forward
process. However, trying to successfully merge two blocks
by re-parameterizing requires the operations between the
blocks to be linear. Consequently, unless the mathemati-
cal requirements for the matrix operation are satisfied, oth-
erwise, such transformation can not be performed. This
may not be practical in a real training scenario, since non-
linearity layers are widely implemented among most state-
of-the-art deep neural networks.

As for JointRD [9], it solved the aforementioned issue
from a different approach. Based on the teacher-student
paradigm, they make the student model be implemented
without shortcuts both in the training and inference stage.
Adapting a teacher-student paradigm, the JointRD make the
teacher pass distilled information to student model. The
teacher, a pre-trained ResNet model in the paper, partic-
ularly leveraged the gradient information the plain-CNN
model. While forwarding the pass, the precedent layers of
plain-CNN model will pass its outputs to the later stages of
ResNet to calculate the loss. This can be interpreted as of-
fering the model with auxiliary architecture to help it con-
verge faster. During backpropagation, the ResNet model
will give the naive student model mixture gradient com-
puted with both models involved. However, since the there
is a passing back to the teacher scenario after each layer.
As going into deeper networks, there are multiple presence
of copies of student outputs need to be processed by the
teacher model. This may result in expensive computation.
Unfold this mechanism, we suspect that the it may result
in high redundancy inside the networks. In particular, we
attempt to provide another solution that also contains train-
ing information from all layers, yet cost less computation to
obtain.

3. Methodology

In this section, we will introduce and compare the
methodology of the previous work [9] and our proposed
framework. To simplify the notation, we define some vari-
ables for the hyper-parameters; in particular, we suppose
the network is composed of n convolutional stages and one
fully-connected stage, where f/, fJ , ..., f] represent the
n convolutional stages of the teacher, f{, fs, ..., fo imply
the n convolutional stages of the student, and C7, ¢ as the
fully connected layer. Also, we define z = {(x;,y:)}%_,
as a batch of training data with size b in which x,y rep-
resent the image and the label respectively. Let f(x) im-
ply the output after passing xi,Xa, ..., X; to the network
fand f o g(x) = f(g(x)) for networks f and g, and

=N o fN o fN fori < jfor N € {T,S}. The
loss term to update the student is denoted as Lgs(z) for the
training dataset z.
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3.1. JointRD

We refer to [9] as JointRD, demonstrating its method-
ology in this part. This method assumes that the teacher
is well-pretrained before distillation and frozen during the
back-propagation. The loss term of JointRD contains n
feature-based losses and n logit-based losses. As shown
in 1(a), the output of each stage of the student is passed
to the deeper stages of the teacher network to generate the
features. It defines

b
%ZLCE(CS o ffa(x),y)

if i=1
LiCE(z) _ i:l
1
E;LCE(CTOL‘T{;;Ofii—l(x)v)’) if i=2.3,...n
b (1
1
L;nSE(Z) = EZ mse 1+1nof11( )7CT°f1Tn(X))
) (2)

, where Log(+,+) and Ly, (-, -) indicates the cross-entropy
loss and mean-square error correspondingly. In general, the
final loss term can be represented as

n

Ls(z) = LTP(2) +n(d_ L ()
i=2

+ )\Z Lmse (3)

, in which n, A are two hyper-parameters for loss weight
tuning.

We argue that this method involves several redundant op-
erations due to its high computational cost, especially send-
ing the data from the student to the teacher, since the i-th
stage in the teacher is computed i times by this design. We
hence propose an adjusted approach called Alginement Dis-
tillation to reduce the cost.

3.2. Alignment Distillation (AlignKD)

To abridge the time of shortcut removing process, one
of the most significant ways is to avoid unnecessary oper-
ations in JointRD. Here we propose Alignment Distillation
(AlignKD) as a new framework for shortcut removal and
present the design in 1(b). Instead of measuring the fea-
ture loss in the final convolutional layer before the fully-
connected one, we calculate the loss between the two stages
directly using their outputs. In AlignKD, the loss term is
composed of n feature-based losses and two logit-based
losses. The feature losses are defined in such a way:

b
1
Lzr'nse E; mse flz flz( )) (4)

Besides, two logit-based loss term are defined as

[t

b
LKL (g gZ L(C% 0 f5,().07 o fT,(x) )

L (z Z Lep(C¥0 f£,(x),y) (6
, where Lk (-, ) implies the Kullback-Leibler divergence
between two provided elements. The final loss term is then
modified as

Ls(z) = aL®(z) + (1 - ) LY®(2) +1 Z L™*¢(z) (7)

, in which « is a hyper-parameter for the weight of logit-
based KD loss and 7 is a hyper-parameter for the feature-
based KD loss. In practice, we set alpha to 0.5 and 7 to be
cosine-annealing decay from 1 to 0.5.

4. Datasets

During training, three datasets, CIFAR-10 [&], CIFAR-
100 [8] and Imagewoof [6], are mainly used for the ex-
periments. CIFAR-10 and CIFAR-100 have 10 classes and
100 classes respectively with a small scale of images. Both
of them contain 50,000 training images and 10,000 testing
images, widely used as the baselines for image classifica-
tion. Imagewoof, on the other hand, provides a larger scale
of images and has a smaller training dataset. It contains 10
dog classes sampled from ImageNet [2], usually regarded
as a more challenging task than CIFAR-10.

5. Experiments

In this paper, experiments on three datasets, CIFAR-10
[8], CIFAR-100 [&], and Imagewoof [6], are conducted
to compare the effectiveness and efficiency of our proposed
framework, AlignKD, and JointRD. In JointRD, the same
hyper-parameters setting was used to maintain the fairness,
where n was cosine-annealing decreasing from 1.0 to 0.5
in the first 60 epochs and A was set to 0.001. In AlignKD,
the hyper-parameter o was set to 0.5 and the n decreases
annealing with the same strategy as JointRD. In these ex-
periments, we define Plain-CNN as the shortcut-removed
network with the same architecture as ResNet. Each exper-
iment was conducted in 200 epochs with a learning rate 0.01
and OneCycle learning rate scheduler [10], where the max
learning rate was set 10 times the optimizer’s learning rate.
ResNet18 and ResNet34 are the two models considered for
shortcut removal. Appendix A provides the validation ac-
curacy for the experiments in this section.

5.1. CIFAR-10

In this subsection, vanilla ResNet18 and ResNet34 were
used for the shortcut-removing experiments. Due to the
small scale of CIFAR images, the max-pooling layer fol-
lowed by the first convolutional layer was removed for bet-
ter performance. This technique is commonly used for the
ResNet implementation on the CIFAR dataset.

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Submission #. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

JointRD Acc (%) Time (mins)
Plain-CNN 18 92.99 107
Plain-CNN 34 92.41 178
AlignKD Acc (%) Time (mins)
Plain-CNN 18 92.97 94
Plain-CNN 34 92.82 152

Table 1. CIFAR-10 Shortcut Removal (ResNetl8: 93.57,
ResNet34: 93.86). Plain-CNN18 and Plain-CNN34 are the mod-
els removing shortcuts from ResNet18 and ResNet34 respectively.
Each experiment was conducted using a pre-trained ResNet as the
teacher and a Plain-CNN as the student, where these two models
have the same depth.

We first trained these two ResNet’s naively with 200
epochs, and regard these models as the teachers in the fol-
lowing experiments. In specific, ResNet18 and ResNet34
obtained accuracy of 93.57% and 93.86% respectively. To
remove the shortcuts from the ResNet, the Plain-CNN net-
work with the same depth were adopted as the students. The
experimental results are shown in Table 1. By comparing
the results of the same model with two different remov-
ing strategies, we suggest that AlignRD generally achieves
comparable results with lower costs than JointRD.

5.2. CIFAR-100

JointRD Acc (%) Time (mins)
Plain-CNN 18 76.68 133
Plain-CNN 34 74.89 222
AlignKD Acc (%) Time (mins)
Plain-CNN 18 76.85 117
Plain-CNN 34 74.83 190

Table 2. CIFAR-100 Shortcut Removal (ResNetl8: 77.25,
ResNet34: 78.39). Plain-CNN18 and Plain-CNN34 are the mod-
els removing shortcuts from ResNet18 and ResNet34 respectively.
Each experiment was conducted using a pre-trained ResNet as the
teacher and a Plain-CNN as the student, where these two models
have the same depth.

Analogous to the model design in the CIFAR-10 ex-
periments, all the max-pooling layers in the models for
CIFAR-100 were also replaced with identity layers. The
pre-trained ResNet18 and ResNet34 had accuracy of 77.25
and 78.39 accordingly. As shown in Table 2, AlignKD out-
performed JointRD in the experiment of removing shortcuts
from ResNet18, and the training time cost was also lower. It
also demonstrated a comparable performance when a larger
network was considered.

JointRD Acc (%) Time (mins)
Plain-CNN 18 80.21 50
Plain-CNN 34 77.11 76
AlignKD Acc (%) Time (mins)
Plain-CNN 18 79.4 44
Plain-CNN 34 77.84 64

Table 3. Imagewoof Shortcut Removal (ResNetl8: 80.86,

ResNet34: 82.66). Plain-CNN18 and Plain-CNN34 are the mod-
els removing shortcuts from ResNet18 and ResNet34 respectively.
Each experiment was conducted using a pre-trained ResNet as the
teacher and a Plain-CNN as the student, where these two models
have the same depth.

5.3. Imagewoof

In previous subsections, we presented the effectiveness
of AlignKD on small-scaled datasets. It has shown success
in abridging the training time for shortcut removal while
preserving the performance. We argue that a more difficult
task is needed for the generality of our proposed framework.
Imagewoof, a 10-class subset of ImageNet, contains images
with higher resolutions than the CIFAR datasets. The num-
ber of training samples per class is also smaller than the
aforementioned datasets.

Instead of removing the max-pooling layer, we main-
tained this layer in ResNet architecture and conducted the
same experiments on Imagewoof. Table 3 shows that the
results are also promising, encouraging us to explore the
further possibilities for AlignKD.

6. Discussion

Since our method intentionally makes the student stage
mimic the behavior of its corresponding stage from the
teacher instead of transferring the gradient knowledge, we
argue that the cross-model inconsistency can be reduced.
A comparable or even better performance from AlignKD
can be expected. Empirically, from section 5, the AlignKD
sometimes outperformed the JointRD method by a small
margin in terms of accuracy. Also from Tables 1 2 3, these
data also illustrate the advantages that the AlignKD con-
verges faster than JointRD. This can be attributed to the
removal of multiple inputs passed from the student to the
teacher, hence both redundant computation and execution
time can be saved.

While AlignKD has gained success in reducing the train-
ing time cost, the distinction may be remaining improved.
According to the experimental results, we suggest that the
cost reduction was not as significant as expected. For exam-
ple, in Table 3, the reduced time of training Plain-CNN18
between the JointRD approach and our method is approx-
imately 6 minutes only. We preliminarily ascribe the un-
expected result to the expensiveness of computing MSE
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loss. In AlignKD, the equation 4 computes the MSE loss
in the middle layers of teacher and student, where the in-
put tensors tend to be highly dimensional. Compared to the
JointRD, the equation 4 only takes into the flattened fea-
tures from the last layer. We deduce that the computational
cost in terms of different dimension matters more than we
thought before. As a result, the performance was not as
significant as we have pictured. To improve this, we pro-
vide several approaches to distill feature-based knowledge
which can be considered helpful, including Attention Trans-
fer [14] and Neuron Selectivity Transfer [7].

Furthermore, even though the inference time is faster
without shortcuts, we can see that the performance of Plain-
CNN34 is statistically not as good as that of Plain-CNN 18.
One possible interpretation is that Plain-CNN 34 is a rel-
atively deeper network, and deeper networks are normally
considered harder to train. Removing the shortcuts and ap-
plying knowledge distillation may still result in insufficient
accuracy.

7. Conclusion

We have proposed a novel architecture based on a knowl-
edge distillation strategy that can achieve shortcut removal
while maintaining the accuracy. From the experiment, we
can see the results are roughly aligned with our expecta-
tions in the positive direction. We have successfully imple-
mented AlignKD which makes the student align with the
teacher model in a stage-by-stage strategy. However, we
also discovered some flaws in our approach which possibly
is the main reason why our model outperformed the Join-
tKD marginally in terms of time. Moreover, a declination in
accuracy has also been observed as our student model went
deeper. In the future, in order to further increase the time
efficiency, finding another low-cost approach for knowl-
edge distillation to effectively train the shortcut-removed
networks is required. Finally, we would also like to explore
the potential of our proposed method by transferring knowl-
edge from a larger model to a smaller one; for example, an
experiment using ResNet34 as teacher and Plain-CNN18 as
student also draws our attention, since the success of this
experiment can provide us with a more efficient network by
compressing the model depth.
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A. Experimental Charts

PlainCNN18 (CIFAR-10)
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(a) Student: Plain-CNN18; Teacher: ResNet18

PlainCNN34 (CIFAR-10)
JointRD AlignKD (ours)
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(b) Student: Plain-CNN34; Teacher: ResNet34

Figure 2. CIFAR-10 validation accuracy
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(a) Student: Plain-CNN18; Teacher: ResNet18
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(b) Student: Plain-CNN34; Teacher: ResNet34

Figure 3. CIFAR-100 validation accuracy
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(a) Student: Plain-CNN18; Teacher: ResNet18

PlainCNN34 (Imagewoof)
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(b) Student: Plain-CNN34; Teacher: ResNet34

Figure 4. Imagewoof validation accuracy
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