
Auto News Categorization - Practical ML-based Mobile Application

KAO Shiu Hong, Spring 2021

Abstract

With the rapid development of modern technology, people often need to deal with much more

information nowadays. In this report, we aim to build an app helping people categorizing

articles, such as news, faster. We firstly collected hundreds of sample news on the Internet,

and then used a machine learning algorithm to do multi-class classification, dividing these

samples into three categories - business, engineering, and science. Finally, we built an

Android app on Android Studio, uploading articles onto this app, and used the criteria we got

in the machine learning to achieve our target. However, we found that the error rates in the

training set and the testing set differ a lot. This may be caused by two reasons, resource

collection and characteristic ignorance. We hope these problems can be fixed by considering

more possible issues which may happen in the algorithm in the future.

1. Introduction

The process can be basically divided into three main parts, specifically, data collection,

machine learning, and app development.

In data collection, we used Python module, BeautifulSoup, as our tool, collecting hundreds of

recent news articles from online available websites, and saving them in different folders on

the local computer based on different categories.

In machine learning, we randomly selected some collected samples as our dictionaries,

finding the commonly appeared words as keywords to build our machine learning vector.

After that, one-versus-all (OVA) method for multiclass classification and stochastic logistic

regression were selected as the main algorithms. We kept updating and modifying the weight

of each keyword so as to make the best standard for classification.

Finally, we copied the standard we obtained from machine learning to Android Studio to

build our app. The design of the app is basically in two parts, file choosing and decision

making. To read the mobile storage, we would request the permission from the user.

Afterwards, the app would read the text in the file chosen and further gave the possible values

corresponding to each category.

2. Data Collection

We used Jupyter Notebook as the IDE of Python. Three folders for different types of news

were created with a .ipynb file inside. We take the type of science news for example in this

report as the remaining were the same.

For the first cell of the file, the following content were compiled and run:

figure 2.1

In the web scraping, BeautifulSoup was the main module we used in this project, and it is in

the library of bs4. Also we imported urllib to help us send the request to our target websites,

and fake_useragent for producing a user agent while sending the request.

Then we used the following code to generate a fake user agent. One can also use his/her own

user agent.

figure 2.2

After that, we can have the following code to open the main page of a news website and save

it in a BeautifulSoup object (here we take ScienceDaily for example.)

figure 2.3

This code also helped us to view the html content of the website, like figure 2.4:

figure 2.4

If we had not included the user agent within urlopen; that is, we only write req.urlopen(url)

instead of req.urlopen(request) in the previous example, a HTTP Error 403: Forbidden will be

generated.

Next, we tried to observe the pattern of the webpage html to find a faster way to get the news

on that website. Taking ScienceDaily as an example, we then found that the string ‘release’

frequently appears among different web addresses of news, so we writed the following code:

figure 2.5

One can also make the code after print(address) to be comments, and check whether the

target websites were what we wanted. Then the code in figure 2.5 could help us write the text

content of these releasing news to our local folder as well as name them with different

categories and indices. After all, we got the following result:

figure 2.6

3. ML Algorithm

After data crawling, we used machine learning techniques to generate a standard for news

categorization, specifically, stochastic regression. To start with this, we selected Java as our

programming tools and IntelliJ as the IDE. At the beginning, we randomly selected some

samples to find the common-appeared keywords as vector characteristics. To achieve this, a

method find_words is written in:

figure 3.1

We selected some frequently appeared words, putting them into a hash map. Afterwards,

short words were deleted in order to prevent some meaningless or useless words for us to

make the algorithm.

Next, we return the hash map of keywords to the main method, constructing a hashmap

storing sample indices associated with it’s keyword appearance number (another hashmap,

mapping keywords to it’s number).

figure 3.2

Also, we set a hashmap to store different weight vectors for one-versus-all (OVA) multiclass

classification, and then train each weight vectors with associated training data with stochastic

regression.

figure 3.3

Consider x[n] be the characteristic vectors of each sample, where n is from 1 to N, and N is

the total sample number. Let y[n] be the result of categorization. y[n] = 1 for weight t if x[n]

x[n] is in group t; otherwise, y[n] = -1. The pseudo code of the algorithm is provided:

OVA Decomposition:
for k∊y_set:

setting for n=1:N𝐷_[𝑘] = {(𝑥[𝑛], 𝑦[𝑛] = 2 * (𝑦[𝑛] − 𝑘) + 1)}
use in the stochastic logistic regression to update weight[k]𝐷_[𝑘]

end

Stochastic Logistic Regression:
for : 𝑖 = 0, 1, …

𝑤 <− 𝑤 + η * θ(− 𝑦[𝑛] * 𝑤𝑇𝑥[𝑛]) * (𝑦[𝑛] 𝑥[𝑛])
(is the learning rate)η

end

Logistic function:
θ(𝑎) = 1/(1 + 𝑒(−𝑎))

figure 3.4

The time of logistic regression loop depends on the size of the training sample set.

Afterwards, we can output the training result:

figure 3.5 figure 3.6

For a testing sample having characteristic vector x[i], we can then calculate for𝑤[𝑡]𝑇𝑥[𝑖]

different weight , and select as a best estimated𝑡 = 1, 2, ... 𝑎𝑟𝑔
𝑡 = 1, 2, 3, ...

𝑚𝑎𝑥 𝑤[𝑡]𝑇𝑥[𝑖]

category of x[i].

4. Android App Development

Android Application was built in Java and Android Studio. We first open a new project and

add the following line in AndroidManifest.xml to help us request the user permission, so we

can upload our testing news article to the app.

figure 4.1

Then we open the activity_main.xml to draw the user interface as well as declare the

associated methods to each view.

figure 4.2

We put a content view at the top of the activity. This will show up the text when we upload a

file to the app. Then we put three labels below to demonstrate the testing result (for𝑤[𝑡]𝑇𝑥)

. Finally, a button was placed at the bottom right corner of the activity. We can𝑡 = 1, 2, 3

upload the file by clicking on this button. The associated method to this button is shown

below:

figure 4.3

This method calls the method chooseFile() if the permission has already been granted,

otherwise a method named requestStoragePermission() will be called to ask for the

permission. Let’s look at requestStoragePermission() first.

figure 4.4

This method shows a rationale for the user to approve the permission. If the user denies the

permission, another rationale pops up and tells the user why the permission is needed.

Next, let’s look at the chooseFile() method.

figure 4.5

After uploading the file, we can then read the text in the file, and change the value of text

view. The following method introduces how we can read the uploading file.

figure 4.6

Now, we can read the article we upload, and surely we can get its

keyword vectors. We move the weight vectors of our training result from

Intellij to Android Studio in the machine learning algorithm by copying

the values. Afterwards, we multiply it with the current keyword vector

one by one to determine the possibility in each category. Finally, show it

on the main activity.

As the result of the example in figure 4.7, since the value for science

category is the largest, we can therefore categorize this news into

scientific type.

figure 4.7

5. Conclusion

This app helps the user categorize the articles in a faster manner. However, there are also

some problems we need to solve in the future as well.

First, the way we copied the machine learning result is just copying and pasting the keywords

and their weight one-by-one. This will raise a problem if we have a larger sample set and a

vector with a larger size.

Second, sometimes the testing result is not as we expected. This is mainly because we are

dealing with news articles on the Internet. In most of the time, the news will not cover only

one aspect but may consider the technological reasons and business results. Also, different

websites may have a different standard to categorize an article, which means one may be put

in scientific type on website A, but business type on another website.

Finally, during the keyword recognition, we ignored the letter of the alphabet and the

punctuation. This may also increase the error rate of our module. In the future, some concepts

in natural language processing are needed to build a better module in this application for sure.

Reference

1. Android Developers documentation - App fundamentals

https://developer.android.com/guide/components/fundamentals

2. Android Developers documentation - Request app permission

https://developer.android.com/training/permissions/requesting

3. Hsuen-tien Lin, National Taiwan University, Machine Learning Foundations

https://www.csie.ntu.edu.tw/~htlin/course/mlfound18fall/

https://developer.android.com/guide/components/fundamentals
https://developer.android.com/training/permissions/requesting
https://www.csie.ntu.edu.tw/~htlin/course/mlfound18fall/

